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Abstract. The problem of the harmonic oscillator damped proportionally to the velocity is 
investigated in the de Broglie-Bohm hidden-variable theory. F i s  system is known to be 
classically equivalent to a parricular type of undamped oscillator with variable mass.) The 
de Broglie-Bohm equation of motion is solved explicitly and compared with its classical 
equivalent. In contrast to some 
other studies of the de Broglie-Bohm theory, the results obtained here are derived without 
approximation. 

The influence of the ‘quanhlm potential’ is discussed. 

1. Introduction 

Among the formalisms that attempt to re-interpret quantum mechanics so as to give a 
meaning to the notion of the ‘trajectory’ of an individual particle, two have so far gained a 
certain acceptance, namely the de Broglie-Bohm causal theory [l-51 and Nelson’s stochastic 
mechanics [6]. Hereafter, we shall exclusively consider the former. 

The de Broglie-Bohm theory has been studied from various points of view, and one 
aspect that has been particularly emphasized is the concept of ‘quantum potential’. This 
tool enables one to consider the motion of a system as following essentially the laws of, 
classical dynamics, but under the influence of a potential composed of the classical potential 
and the so-called ‘quantum potential’, a nonlinear contribution coming from the quantum- 
mechanical wavefunction. This approach has been employed to analyse several problems 
such as quantum interference [7], the Aharonov-Bohm effect [8], statistical properties 
[9,10], the process of measurement in quantum mechanics [ll], etc. The de Broglie- 
Bohm equation of motion has also been solved, mostly numerically, in some simple cases 
such as timedependent scattering from square barriers and square potential wells [12, 131. 
Explicit exact solutions of the equation of motion are, in general, difficult to obtain for 
non-trivial systems because of the nonlinearity of the quantum potential. 

One particular system which is important for physical reasons is the harmonic oscillator. 
We shall present hereafter an analysis of the damped harmonic oscillator according to the 
de Broglie-Bohm theory. (The damping force is taken proportional to the velocity.) This 
system has the property that, in spite of the nonlinearity of the quantum potential, it is 
possible to solve exactly the de Broglie-Bohm equation of motion. 

Moreover, the classical damped oscillator possesses, as is well known, two types of 
qualitatively different trajectories, depending on the relative values of the parameters, 
the damping constant and the natural angular frequency of oscillation: the trajectory of 
the underdamped system exhibits oscillations, whereas neither the overdamped nor the 
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critically damped system oscillates at all. The question may then be asked whether the 
same relationship between the strength of the damping and the type of trajectory holds for 
the de Broglie-Bohm oscillator. We shall see that such is not the case and that the classical 
categories ‘underdamped’ and ‘critically damped‘ mix in the de Broglie-Bohm theory. In 
this study, it is again the quantum potential that will shed light onto the physical reasons 
for the behaviour of the system. These considerations will be presented in section 3. 

It is important to note that the damped harmonic oscillator with constant mass has the 
same classical equation of motion [14-161 as a particular type of undumped oscillator with 
variable mass. Our classical treatment will thus apply simultaneously to both problems. 
(This equivalence, however, does not seem to be maintained in the quantum-mechanical 
context [16,171.) For the sake of brevity, we shall always refer to the problem as the 
‘damped harmonic oscillator’. 

According to de Broglie-Bohm theory, before being able to express the equation of 
motion of a system, one must first solve the corresponding problem in ordinary quantum 
mechanics. The question of quantizing a system with friction has been investigated by many 
authors, for instance [U-291. We shall therefore provide, in section 2, a brief overview 
of the damped harmonic oscillator in Schrodinger’s theory, emphasizing the aspects of the 
question that will be of importance for the de Broglie-Bohm theory. 

2. Damped harmonic oscillator in classical mechanics and Schrodinger’s theory 

The purpose of this section is two-fold. In the first instance, we shall briefly recall the 
Lagrangian and Hamiltonian formulations of the classical damped harmonic oscillator, and 
secondly we shall treat the problem of the damped oscillator according to Schrodinger’s 
theory. We emphasize that we shall deal exclusively with the underdamped oscillator, the 
other cases being similar. In section 3, we shall turn to the treatment of the system according 
to the de Broglie-Bohm theory. 

Let a point P of mass m move under the influence of an ideal spring having a stiffness 
constant k mu: and of a damping force Fd given by Fd = -2myi, where W. y ,  and x 
denote respectively the angular frequency of the undamped oscillator, the damping constant, 
and the displacement of P from its equilibrium position. The equation of motion of this 
system reads 

(2.1) 

It has long been known [26, 30-331 that (2.1) derives from at least two non-trivially distinct 
Lagrangian functions L and Ln given by 

(2.2) 

f + 2 y i  +w:x = 0. 

~ L ( x ,  i ,  t )  = me2yf(i2 - 

in which E denotes an arbitrary constant, with dimensions of energy, and w is the angular 
frequency of the damped oscillator. 

Because of the fact that L and LH yield the same equation of motion, no loss of 
generality arises from choosing (2.2), as opposed to (2.3). to describe the harmonic oscillator 
with friction, and we shall make this choice from now on. The corresponding Hamiltonian 
function reads 
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The question of quantizing a dissipative system has been investigated by many authors, 
and there exist in the  literature several review articles, for instance [16,17,26,28,29], 
containing comprehensive lists of references. Therefore it is sufficient to present here only 
a very brief summary of some aspects of the problem. 

The most straightforward method consists in quantizing canonically [34] the classical 
Hamiltonian function X and in solving the resulting SchrGdinger equation. At this stage, 
the question arises as to which of the Hamiltonian functions that give rise to the correct 
equation of motion (2.1) must,be employed [26,3S]. It is indeed clear that the Lagrangian 
functions (2.2) and (2.3) will lead to different Hamiltonian functions and thus to inequivalent 
quantizations via Schrodinger’s equation. 

Various points of view have been expressed on how to select the ’right’ Hamiltonian 
function [15,281, and other quantization schemes have been proposed to circumvent the 
problem of the choice of the Lagrangian [16,17,25,28,29,36]. Without entering into any 
detailed discussions of thii question, we simply state that we adopt here the approach of 
quantizing canonically the Hamiltonian function (2.4) and  solving Schmdinger’s equation. 
The final result of this procedure, the wave function Y ( x ,  t )  normalized to unity, then reads 
[17-23,291 

P, exp [ - i($r + g)] (2.7) 

where H ,  denotes the nth Hermite polynomial and the quantities A., U ,  e,, are related to 
the parameters of the problem by 

A, (,EY~!)-’/’ u = (fi/mo)’/*e+ en E (n + ;)Eo. (2.8) 

It should be noted that en in (2.8) should not be interpreted as the energy of the nth 
‘energy level’ since, given that the system is dissipative, there can be no stationary state. 
For convenience we shall, however, refer to Yn as the nth ‘state’ of the oscillator. This 
terminology will not create any confusion. 

It is important to emphasize that the mathematical correctness and self-consistency of 
the various quantization schemes is not questioned; only the physical interpretation of the 
wavefunctions thus produced requires care. Therefore, the point of view adopted here is the 
following: we need a wavefunction for the oscillator to be able to express the de Broglie- 
Bohm equation of motion in the following section. It is mathematically self-consistent to 
use the wavefunction (2.5)-(2.8), and this wavefunction obviously describes the undamped 
oscillator [37] in the special case y = 0. It is thus meaningful to select it as ‘guiding 
wave’ for the de Broglie-Bohm theory, bearing in mind that the physical validity of the 
results rests, ultimately, on the physical interpretation given to the quantum-mechanical 
wavefunction. If one wishes, the treatment of the de Brogli+Bohm equation of motion 
below may always be repeated for different ‘guiding waves’ obtained by other quantization 
methods. 
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3. de Broglie-Bohm damped harmonic oscillator 

According to the de Broglie-Bohm theory [l-51, a system possesses a well defined trajectory 
as it does in classical mechanics. In order to obtain the equation of motion of the system, 
one must first solve the corresponding Schrodinger equation for the wavefunction Y(q, t )  
and construct a function S, generalizing Hamilton's principal function, by the prescription 

eiSfh = Y/(TJY)'D. (3.1) 

The equation of motion is then assumed to be the classical relationship between the 
momentum p = aL/aq of the system and Hamilton's principal function S(q,  t ) .  namely 

P = a m ,  w q .  (3.2) 

This prescription constitutes a physically reasonable base for a theory of mechanics 
since it implies [1-4] that S defined by (3.1) fulfils the Hamilton-Jacobi equation in the 
l i t  fi ----f 0. More precisely, for the Lagrangian function of interest here, namely 

(3.3) ~ ( x . 2 ,  t )  = $ne2Y'x2 - ~ ( x ,  t )  

~ ( x ,  t) = fmo$e2YrxZ (3.4) 

which contains (2.2) as the special case 

one may construct the Hamiltonian function and Schrodinger's equation. If the wavefunction 
W ( x ,  t )  is decomposed into its modulus M ( x ,  t )  and its phase as in (3.1), the real and 
imaginary parts of Schriidinger's equation, respectively, then read 

(3.5) 

(3.6) 

In the limit f i  + 0, (3.5) becomes the classical Hamilton-Jacobi equation, so that (3.2) 
yields the classical equation of motion. (It should be noted that (3.5) and (3.6) are slightly 
different from the usual de Broglie-Bohm equations [3,4]. This is due to the fact that the 
systems usually studied are assumed frictionless, so that the constant y of (3.3) is normally 
considered as vanishing. As one can see, there is no complication in treating the more 
general (3.3).) 

On the other hand, when the limit fi + 0 is not taken, (3.5) shows that the system 
seems to move according to the classical equation of motion, but under the influence of 
a potential composed of the classical V and the 'quantum' potential Q, nonlinear in the 
wavefunction, defined by 

4 2  M x x  Q(x. t )  -e-2y'-, 
2m M (3.7) 

which is a given function of x and t after substitution of the function M obtained by solving 
Schrodinger's equation. Explicitly, if one returns to the Lagrangian formalism, the equation 
of motion for the Lagrangian function (3.3) becomes, in terms of V and Q 

-- aL+- (V+Q)=O,  a 
dt ax ax (3.8) 
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which is equivalent to 

a 
ax 

mf + 2my.i + -[(V + Q)e-"'] = 0. (3.9) 

It should be emphasized, however, that this terminology is somewhat misleading since, 
if one were to study the classical motion of a system under the total potential V + Q ,  
one would solve only the Hamilton-Jacobi equation (3.5) for S and proceed from there. 
Thii would indeed lead to an equation of motion equivalent to (3.9). On the other hand, 
the de Broglie-Bohm theory requires S to be the solution of not only the Hamilton-Jacohi 
equation (3.5) but also of (3.6). Consequently, S is less general in the de Broglie-Bohm 
theory, having to satisfy two equations, than it would be in the classical problem for the 
total potential V + Q. Thus, in general, the de Broglie-Bohm trajectory, solution of (3.2), 
is a special case of the classical trajectory (3.9) arising from the potential V + Q. As we 
shall see, this is precisely what happens for the damped harmonic oscillator. 

An important consequence of (3.1) is that only the phase of the wavefunction Y 
contributes to S. Moreover, whenever the phase of the wavefunction is independent of 
the~spatial coordinate q,  so is the corresponding S, and the equation of motion (3.2) reduces 
to p = 0, predicting that the system is 'at rest'. Such is the case for the usual frictionless 
harmonic oscillator [37]: energy is conserved, which implies that Schradinger's equation 
admits stationary states of the form '4&, t )  = @n(~)exp(-iEnt/fi). Furthermore, the 
time-independent wavefunctions @"(x) happen to he pureIy real [37], and therefore the 
phase of Yn(x, t )  is independent of the position, with the consequence just mentioned. On 
the other hand, the wavefunction Yn of the damped oscillator (2.5H2.8) does possess a 
non-vanishing position-dependent phase thanks to the friction, so that the de Broglie-Bohm 
trajectory is non-trivial, as we shall see. 

It is a simple matter to substitute (2.5)-(2.7) into (3.1). (3.2), calcufate the derivative, 
use the definition (2.8) of U ,  and finally obtain the equation of motion in the form 

(3.10) me h l .  x - - p = -mye2Y'x. 

The solution of (3.10) may be written 

x( t )  =-xoe-Y' (3.11) 

where xo is the initial position of the oscillator. 
The trajectory possesses the property that it is independent of both the quantum number 

n appearing in the wavefunction (2.5)-(2.7) and of the mass m of the oscillator, although 
it does depend on the friction constant y .  It is also monotonically approaching the origin 
x = 0 as the time increases. Such a behaviour is very different from that of an underdamped 
harmonic oscillator according to classical mechanics, but all these features can be explained 
by investigating the quantum potential Q .  

If the expression (2.6) for Mn is inserted into the definition (3.7) of the quantum potential, 
and the differential equation satisfied by the Hermite polynomials is taken into account, as 
well as the definition (2.8) of U ,  it is found that the quantum potential reads 

(3.12) 

As one can see, the quantum potential of this problem is obtained without approximation. 
This contrasts with what happens for other physical systems treated according to the 
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de Broglie-Bohm theory. When this explicit quantum potential is added to the classical 
potential v of ( 3 4 ,  a non-trivial cancellation takes place between the terms involving 00" 
and 02, yielding as total potential 

(3.13) 

Let us now consider a classical system moving under the influence of this total potential, 
namely according to the equation of motion (3.9). The latter becomes 

x +2yx + yzx = 0 (3.14) 

which is the equation of a classical harmonic oscillator critically damped since the natural 
angular frequency is equal to the damping constant y .  The fact that the damping is 
critical could already have been deduced from the form of the potential (3.13), where y 2  
appears in place of what would be 00" for an underdamped oscillator. It is also clear from 
(3.13) that the trajectory must be independent of the quantum number n because of the fact 
that the n-term contributes additively to the total potential and is independent of x .  Finally, 
it remains to be noted that the de Brogli-Bohm equation of motion (3.10) and its solution 
(3.11) are special cases of the trajectory (3.14) of the classical system moving under the 
influence of V+Q. We have thus proved that the de Broglie-Bohm underdamped harmonic 
oscillator behaves like a particular classical critically damped oscillator. The connection is 
established through the quantum potential which makes the interpretation transparent, and 
the link that we found between the de Broglie-Bohm trajectory and the classical trajectory 
enables us to explain the qualitative features of the motion, on which we shall briefly 
comment. 

In the first instance, the reason why the de BroglieBohm underdamped oscillator 
approaches the origin without oscillating is obvious: mathematically, the underdamped 
de Broglie-Bohm oscillator is a critically damped classical oscillator, and the latter does 
not oscillate. From the physical point of view, an analogy with the frictionless de Broglie- 
Bohm oscillator is enlightening. Indeed, as emphasized above in the second paragraph after 
(3.9), the frictionless harmonic oscillator guided by a quantum stationary state qn is 'at 
rest' according to the de Broglie-Bohm theory. Thus, in this case, although the classical 
trajectory does oscillate (with constant amplitude), the de Broglie-Bohm trajectory is not 
oscillatory at all. The situation would be different if one were to use as a guiding wave a 
linear superposition of the wavefunctions W m  and % of two distinct energy levels m and 
n, m # n. (Unfortunately, even in the frictionless case, the equation of motion (3.2) cannot 
be solved analytically for such a superposition.) 

Seen in this light, the behaviour (3.1 1) of the harmonic oscillator with friction according 
to the de Broglie-Bohm theory is not unexpected we used as a guiding wave not a 
superposition of 'states' but one single 'state' Y", n fixed. Given that the friction introduces 
into the guiding wave (2.5)+7) a position-dependent phase, the de Broglie-Bohm system 
is no longer at rest, and the trajectory is non-trivial. Oscillations are absent, as they are 
in the frictionless case for a fixed a. One may also note that the trajectory (3.11) of the 
underdamped de Broglie-Bohm oscillator is identical to the formula for the amplitude decay 
of the oscillation predicted by classical mechanics for an underdamped oscillator. 

On the other hand, the fact that the trajectory is independent of the mass may seem 
more surprising, but can also be understood physically if one recalls that, in classical 
mechanics, the trajectory involves the mass exclusively through the natural angular frequency 
of oscillation 00. (The amplitude decay of the oscillation is independent of the mass 
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and governed only by the friction constant y if the damping force is written as above: 
Fd = -2myi.)  A non-oscillatory motion should not be expected to involve W. and 
therefore the mass does not appear in (3.1 1). Once again, this is consistent with drawing the 
analogy between the de BroglieBohm trajectory and the amplitude decay of the oscillation 
of the classical underdamped trajectory. 

4. Conclusion 

We used here, as a ‘guiding wave’ in the de Broglie-Bohm hidden-variable theory, the 
wavefunction (2.5)-(2.8) which describes, according to some quantization schemes [ 17- 
231, an underdamped harmonic oscillator. It was possible to solve without approximation 
the de Broglie-Bohm equation of motion with this guiding wave in ‘state’ II, and 
the corresponding solution (3.11) was interpreted as the trajectory of the underdamped 
harmonic oscillator according to the de BroglieBohm theory. The physical validity 
of this interpretation rests, ultimately, on the interpretation of the quantum-mechanical 
wavefunction (2.5H2.8). 

The de Broglie-Bohm trajectory possesses the properties that it is independent of the 
mass of the system and tends monotonically to the origin x = 0 as the time increases, 
features which contrast with the behaviour of the classical trajectory but were traced to a 
double origin: mathematically, the concept of ‘quantum potential’ enabled us to prove the 
equivalence between the underdamped de BroglieBohm oscillator and a critically damped 
classical oscillator, from which the properties of the de Broglie-Bohm trajectory can be 
deduced at once. From the physical point of View, some aspects of the motion were seen 
to follow from the fact that we guided the oscillator by a pure ‘state’ Y,, of the quantum- 
mechanical wavefunction, as opposed to a linear superposition of different ‘states’. 
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